机读格式显示(MARC)
- 000 01257nam0 2200193 450
- 010 __ |a 978-7-111-64353-1 |d CNY89.00
- 100 __ |a 20200114d2020 em y0chiy50 ea
- 210 __ |a 北京 |c 机械工业出版社 |d 2020-01-01
- 330 __ |a 全书一共8章,每个章节都由问题、算法、案例三部分组成,具有系统性和实战性。第1-2章讲解了信贷业务的基础知识以及常用的规则引擎、信用评估引擎的建模方法。第3章以项目冷启动为背景,讲解了风控领域应用广泛的迁移学习方法。第4-5章介绍了幸存者偏差与不均衡学习中所使用的无监督学习与半监督学习方法。第6章阐述了无监督的异常识别算法,该算法常用于数据清洗与冷启动项目,是反欺诈引擎中常用的个体欺诈检测方法。 第7章分享了一些经作者实践证明效果较好的模型优化方法,并对模型融合的思路进行了较为详细的介绍。第8章重点讲解了知识图谱相关的复杂网络基础知识及网络表示学习方法,其中的社区发现算法常用于团伙欺诈检测。此外,本章中的部分方法对信用评估模型的优化也有很大帮助。
- 333 __ |a 面向广大从事风险控制的分析师、建模师、算法工程师;也适合对传统信用评分卡有初步认识的在校学生;同时也适合对机器学习在风控领域应用感兴趣的读者
- 801 __ |a CN |b 北京百万庄图书大厦 |c 2020-01-16